

TRAINING COURSE

Confluent Developer Skills for Apache Kafka°

Course Objectives

The lessons and activities in this course enable participants to build the skills to:

- Write Producers and Consumers to send data to and read data from Kafka
- Integrate Kafka with external systems using Kafka Connect
- Write streaming applications with Kafka Streams & ksqlDB
- · Integrate a Kafka client application with Confluent Cloud

Hands-on Training

Several of the hands-on lab exercises in this course follow the story of building and upgrading a driver location app. Throughout the course concepts are applied directly to a working application. Exercises are available in Java, C# and Python.

Exercises include:

- · Working with Kafka command line tools
- Producing driver location data to Kafka and consuming that data in real-time
- Refactoring the application to use Avro and Schema Registry
- · Pulling the driver data into a Kafka Streams app to enrich it
- Extracting a table from an external database into Kafka using Kafka Connect
- Exploring data using ksqlDB
- · Experimenting with semantic partitioning

Prerequisites

Attendees should be familiar with developing professional apps in Java (preferred), C#, or Python. Additionally, a working knowledge of the Apache Kafka architecture is required for this course, either through:

- · Prior experience, or
- By completing training beforehand to ensure familiarity with the relevant concepts. Visit www.confluent.io/training to learn the fundamentals of data streaming and Apache Kafka.

Participants are required to provide a laptop computer with unobstructed internet access to fully participate in the class.

To evaluate your Kafka knowledge for this course, please complete the self-assessment: https://cnfl.io/fundamentals-guiz

To sign-up for one of our courses, visit us here.

Who Should Attend?

Application Developers and Architects who want to write applications that interact with Apache Kafka. The course treats Java as a first-class citizen, but students will derive value even if Java is not their primary programming language. C# and Python clients will also be used in some options for labs.

Content

This course will enable your skills to:

Introductory Concepts

- Write code to connect to a Kafka cluster
- Distinguish between leaders and followers and work with replicas
- Explain what a segment is and explore retention
- · Use the CLI to work with topics, producers, and consumers

Working with Producers

- · Describe the work a producer performs, and the core components needed to produce messages
- Create producers and specify configuration properties
- Explain how to configure producers to know that Kafka receives messages
- · Delve into how batching works and explore batching configurations
- · Explore reacting to failed delivery and tuning producers with timeouts
- Use the APIs for Java, C#/.NET, or Python to create a Producer

Consumers, Groups, and Partitions

- · Create and manage consumers and their property files
- Illustrate how consumer groups and partitions provide scalability and fault tolerance
- · Explore managing consumer offsets
- · Tune fetch requests
- Explain how consumer groups are managed and their benefits
- · Compare and contrast group management strategies and when you might use each
- Use the API for Java, C#/.NET, or Python to create a Consumer

Schemas and the Confluent Schema Registry

- · Describe Kafka schemas and how they work
- · Write an Avro compatible schema and explore using Protobuf and JSON schemas
- · Write schemas that can evolve
- Write and read messages using schema-enabled Kafka client applications
- Using Avro, the API for Java, C#/.NET, or Python, write a schema-enabled producer or consumer that leverages the Confluent Schema Registry

Streaming and Kafka Streams

- ullet Develop an appreciation for what streaming applications can do for you back on the job
- Describe Kafka Streams and explore steams properties and topologies
- · Compare and contrast steams and tables, and relate events in streams to records/messages in topics
- Write an application using the Streams DSL (Domain-Specific Language)

Introduction to Confluent ksqlDB

- Describe how Kafka Streams and ksqlDB relate
- · Explore the ksqlDB CLI
- Use ksqlDB to filter and transform data
- · Compare and contrast types of ksqlDB queries
- Leverage ksqlDB to perform time-based stream operations
- Write a ksqlDB guery that relates data between two streams or a stream and a table

Kafka Connect

- List some of the components of Kafka Connect and describe how they relate
- Set configurations for components of Kafka Connect
- Describe connect integration and how data flows between applications and Kafka
- Explore some use-cases where Kafka Connect makes development efficient
- · Use Kafka Connect in conjunction with other tools to process data in motion in the most efficient way
- · Create a Connector and import data from a database to a Kafka cluster

Content

This course will enable your skills to:

Design Decisions and Considerations

- Delve into how compaction affects consumer offsets
- Explore how consumers work with offsets in scenarios outside of normal processing behavior and understand how to manipulate offsets to deal with anomalies
- Evaluate decisions about consumer and partition counts and how they relate
- · Address decisions that arise from default key-based partitioning and consider alternative partitioning strategies
- Configure producers to deliver messages without duplicates and with ordering guarantees
- List ways to manage large message sizes
- · Describe how to work with messages in transactions and how Kafka enables transactions

Robust Development

- · Compare and contrast error handling options with Kafka Connect, including the dead letter queue
- · Distinguish between various categories of testing
- List considerations for stress and load test a Kafka system

Visit confluent.io/training for more information.